Section 1.4

Definition of Function: A function f from a set A to a set B is a relation that assigns to each element x in the set A exactly one element y in the set B. The set A is the domain (or set of inputs) of the function f, and the set B contains the range (or set of outputs).

Characteristics of a Function from Set \boldsymbol{A} to Set B

a) Each element in A must be matched with an element in B.
b) Some elements in B may not be matched with any element in A.
c) Two or more elements in A may be matched up with the same element in B.
d) An element in A (the domain) cannot be matched with different elements in B.

Function Terminology

Function: A function is a relationship between two variables such that to each value of the independent variable there corresponds exactly one value of the dependent variable.

Function Notation: $y=f(x) ; \quad f$ is the name of the function, y is the dependent variable, x is the independent variable, and $f(x)$ is the value of the function at x.

Domain: The domain of a function is the set of all values (inputs) of the independent variable for which the function is defined. If x is in the domain of f, f is said to be defined at x. If x is not in the domain of f, f is said to be undefined at x.

Range: The range of a function is the set of all values (outputs) assumed by the dependent variable (that is, the set of all function values).

Implied Domain: If f is defined by an algebraic expression and the domain is not specified, the implied domain consists of all real numbers for which the expression is defined.

Problem 1. Let $A=\{a, b, c\}, B=\{0,1,2,3\}$. Which sets of ordered pairs represent functions from A to B ?
a) $\{(a, 1),(c, 2),(c, 3),(b, 3)\}$
b) $\{(a, 1),(b, 2),(c, 3)\}$
c) $\{(1, a),(0, a),(2, c),(3, b)\}$
d) $\{(c, 0),(b, 0),(a, 3)\}$

Problem 2. Determine whether the equation represents y as a function of x.
a) $x+y^{2}=4$
b) $(x+3)^{2}+y^{2}=1$
c) $|y|=4-x$
d) $y=-5$

Problem 3. Evaluate the function at each specified value of the independent variable and simplify.
a) $h(t)=t^{2}-2 t, \quad h(2), \quad h(-1), \quad h(x+2)$
b) $\quad q(x)=\frac{1}{x^{2}-9}, \quad q(3), \quad q(y+3)$
c) $f(x)=\left\{\begin{array}{l}2 x+1, x<0 \\ 2 x+2, x \geq 0\end{array} \quad f(2), \quad f(-2)\right.$
d) $f(x)= \begin{cases}2-3 x, & x \leq-3 \\ 0, & -3<x \leq 3, \\ 2 x^{2}-8, & x>3\end{cases}$

Problem 4. In the following exercises, find the values of x for which $f(x)=g(x)$.
a) $f(x)=x^{4}-2 x^{2}, g(x)=2 x^{2}$
b) $f(x)=\sqrt{x}-4, g(x)=2-x$

Problem 5. Find the domain of the function.
a) $g(x)=1-2 x^{2}$
b) $f(t)=\sqrt[3]{t+4}$
c) $h(x)=\frac{3}{x^{2}+3 x+2}$
d) $f(x)=\frac{\sqrt{x+6}}{x+6}$
e) $f(x)=\frac{x-5}{\sqrt{x^{2}-9}}$

Problem 6. Find the difference quotient and simplify your answer.

$$
f(x)=5 x-x^{2}, \quad \frac{f(5+h)-f(5)}{h}, h \neq 0
$$

Homework: Read section 1.4, do \#4, 6, 20, 32, 38, 50, 66,82 (the quiz for this section will be taken from these problems)

